Analogues of Entropy in Bi-Free Probability Theory: Microstates

نویسندگان

چکیده

Abstract In this paper, we extend the notion of microstate free entropy to bi-free setting. particular, using analogue random matrices, is defined. Properties essential an theory are developed, such as behaviour when transformations on left variables or right performed. addition, demonstrated be additive over collections provided additional regularity assumptions included and computed for all central limit distributions. Moreover, orbital version examined, which provides a tighter upper bound subadditivity alternate characterization bi-freeness in certain settings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-microstates Free Entropy Dimension for Groups

We show that for any discrete finitely-generated group G and any self-adjoint n-tuple X1, . . . , Xn of generators of the group algebra CG, Voiculescu’s non-microstates free entropy dimension δ(X1, . . . , Xn) is exactly equal to β1(G) − β0(G) + 1, where βi are the L Betti numbers of G.

متن کامل

A Microstates Approach to Relative Free Entropy

His approach involved non-commutative Hilbert transform and is algebraic in nature. In the case that B = C, this quantity is denoted χ(X1, . . . , Xn), and its properties are very similar to those of the free entropy χ(X1, . . . , Xn) introduced by Voiculescu in [4] using microstates; in fact, it may very well be that the two quantities coinside. Using the microstates approach to free entropy, ...

متن کامل

Maximality of the Microstates Free Entropy for R-diagonal Elements

An non-commutative non-self adjoint random variable z is called R-diagonal, if its ∗-distribution is invariant under multiplication by free unitaries: if a unitary w is ∗-free from z, then the ∗-distribution of z is the same as that of wz. Using Voiculescu’s microstates definition of free entropy, we show that the R-diagonal elements are characterized as having the largest free entropy among al...

متن کامل

Microstates Free Entropy and Cost of Equivalence Relations

We define an analog of Voiculescu’s free entropy for n-tuples of unitaries u1, . . . , un in a tracial von Neumann algebra M which normalize a unital subalgebra L[0, 1] = B ⊂ M. Using this quantity, we define the free dimension δ0(u1, . . . , un G B). This number depends on u1, . . . , un only up to orbit equivalence over B. In particular, if R is a measurable equivalence relation on [0, 1] gen...

متن کامل

Dimitri Shlyakhtenko Lower Estimates on Microstates Free Entropy Dimension

By proving that certain free stochastic differential equations with analytic coefficients have stationary solutions, we give a lower estimate on the microstates free entropy dimension of certain n-tuples 1. In particular, for small q, q-deformed free group factors have no Cartan subalgebras. An essential tool in our analysis is a free analog of an inequality between Wasserstein distance and Fis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab279